

Univalent Material Set Theory

Håkon R. Gylterud Elisabeth Stenholm

TYPES 2024

Why talk about set theory in type theory?

- Set theory is mathematics too.
	- The structures of set theory might be useful.
- **HoTT** may give new perspectives on sets.

This talk's perspective: How to approach higher-dimensional set theory? Formalisation:<https://git.app.uib.no/hott/hott-set-theory>

Outline

1 Models:

- Aczel's V (aka. V^{∞})
- The iterative hierarchy (aka. V^0)
- All the things in between (aka. V^n)
- 2 A couple of properties
	- **Extensionality**
	- Replacement

[Models](#page-3-0)

V^{∞}

$$
V^\infty:=\mathit{W}_{A:\mathit{U}}A
$$

■ Elements on the form sup
$$
Av
$$
 where

 $A : U$ and

$$
\blacksquare \quad v:A\to V^\infty.
$$

- The initial algebra for the polynomial functor $X \mapsto \sum_{A:U} (A \to X).$
- **Lives on the same type level as** U **(if any).**

V^{∞}

$$
V^\infty:=W_{A:U}A
$$

- A natural elementhood relation $x\in\sup\,A\,v:=\sum_{a:A} (v\,a=x)$ or: $x\in\mathsf{sup} \; A\,\nu:=\nu^{-1}x$
- Used by Aczel in a setoid model of CZF.

A

∞

v

[Sets](#page-6-0)

For V^{∞} , the \in -relation is not propositional. But we can restrict to a subtype where it is.

is-iterative-0-type :
$$
V^{\infty} \to \text{Type}
$$

is-iterative-0-type (sup $A v$) := $\left(\prod_{x: V^{\infty}} \text{is-prop}(v^{-1}x)\right) \times \left(\prod_{a:A} \text{is-iterative-0-type}(v\ a)\right)$

$$
V^{0} := \sum_{x: V^{\infty}} (\text{is-iterative-0-type } x)
$$

[Models](#page-3-0) [Sets](#page-6-0) [Higher sets](#page-13-0) [Univalent Material Set Theory](#page-18-0) [Representation and replacement](#page-23-0)

V^0 as model of set theory

$$
V^0 = \sum_{x: V^{\infty}} (\text{is-iterative-0-type } x)
$$

 V^0 is the initial algebra of the U-restricted powerset functor: $P_U^0 X = \sum_{A:U} A \hookrightarrow X.$ V^0 is a mere set.

[Models](#page-3-0) [Sets](#page-6-0) [Higher sets](#page-13-0) [Univalent Material Set Theory](#page-18-0) [Representation and replacement](#page-23-0)

V^0 as model of set theory

$$
V^0 = \sum_{x: V^{\infty}} (\text{is-iterative-0-type } x)
$$

A

v

 V^0

- \in naturally restricts to V^0 .
- (V^0, \in) models (constructive) set theory.

Structural properties of $\,V^0\,$

(j.w.w. Daniel Gratzer and Anders Mörtberg)

We can also look at V^0 from a structural point of view:

Example 11
$$
\mathsf{E} \mathsf{I}: \mathsf{V}^0 \to \mathsf{Type}
$$
 defined by $\mathsf{El}(\mathsf{sup} \ A \ \mathsf{v}):=A$

- $(V⁰, E^I)$ is a universe a la Tarski, closed under:
	- Γ Σ-, Π-, Id-types
	- \blacksquare Inductive types such as $\mathbb N$ and Bool
	- Set quotients
- All decodings are definitional: $\mathsf{El}(\Pi(\mathsf{A},\mathsf{B}))\equiv \prod_{\mathsf{a}:\mathsf{El}} \mathsf{Al}(\mathsf{B}\mathsf{a})$
- Sub-universes of U generate subuniverses of V^0 .

V^0

Conclusion: V^0 is a mere set universe of mere sets.

Conclusion: V^0 is a mere set universe of mere sets.

Application: Category with Families structure on the category of sets.

See: Gratzer, Gylterud, Mörtberg , Stenholm (2024). The Category of Iterative Sets in Homotopy Type Theory and Univalent Foundations arXiv:2402.04893.

[Higher sets](#page-13-0)

 P n

The $\mathit{U}\text{-}$ restricted powerset functor P^0_U : Type \rightarrow Type can be generalised as follows:

$$
P_U^{n+1} : \text{Type} \to \text{Type}
$$

$$
P_U^{n+1}X := \sum_{A:U} A \hookrightarrow^n X
$$

where $A \hookrightarrow^n X$ are the *n*-tructated maps into X from A.

The $\mathit{U}\text{-}$ restricted powerset functor P^0_U : Type \rightarrow Type can be generalised as follows:

$$
P_U^{n+1} : \text{Type} \to \text{Type}
$$

$$
P_U^{n+1}X := \sum_{A:U} A \hookrightarrow^n X
$$

where $A \hookrightarrow^n X$ are the *n*-tructated maps into X from A.

\n- $$
P_U^0 X
$$
 are the $(U\text{-small})$ subtypes X .
\n- $P_U^1 X$ are the $(U\text{-small})$ covering types of X .
\n

V n

The initial algebra of P_{U}^{n} can be constructed just as for $P^{0}\colon$

is-iter-
$$
n+1
$$
-type : $V^{\infty} \to \text{Type}$
is-iter- $n+1$ -type (sup $A v$) := $\left(\prod_{x: V^{\infty}} \text{is-n-type} (v^{-1}x) \right) \times \left(\prod_{a:A} \text{is-iter- } n+1$ -type $(v a) \right)$

$$
V^n = \sum_{x: V^{\infty}} (\text{is-iter-n-type } x)
$$

Structural properties of V^n

$$
V^n = \sum_{x: V^{\infty}} (\text{is-iter-n-type } x)
$$

 V^n is an *n*-type.

- El : $V^n \to \text{Type defined by El}(\text{sup } A \nu) := A$
- (V n *,* El) is a universe a la Tarski, closed under:
	- Σ -, Π-, Id-types
	- \blacksquare Inductive types such as $\mathbb N$ and Bool
	- Set quotients
- All decodings are definitional: $\mathsf{El}(\Pi(\mathsf{A},\mathsf{B}))\equiv \prod_{\mathsf{a}:\mathsf{El}} \mathsf{Al}(\mathsf{B}\mathsf{a})$
- Sub-universes of U generate subuniverses of V^n .

Conclusion: V^n is an *n*-type universe of *n*-types.

Håkon R. Gylterud, Elisabeth Stenholm

[Univalent Material Set Theory](#page-18-0)

Idea

$\mathsf{Remember} \colon (V^0, \in \mathsf{) }$ models (constructive) set theory

Question

What does (V^n, \in) model?

Idea

$\mathsf{Remember} \colon (V^0, \in \mathsf{) }$ models (constructive) set theory

Question

What does (V^n, \in) model?

Answer

Univalent material set theory!

What is univalent material set theory

Univalent material set theory

- Has HoTT as its meta-theory.
- Generalises the axioms of set theory to higher type levels:
	- \blacksquare Level 0 is about mere sets and material sets.
	- \blacksquare Level 1 is about groupoids and multisets.
	- . . . ?
- **Most axioms are indexed by type levels in range 0 to** ∞ **.**
- $x \in y$ is an $n-1$ type, and so is $x = y$.

∈-structures

Definition

An ∈-structure, (V*,* ∈) consists of

- \blacksquare V : Type
- $\blacksquare \in : V \to V \to \text{Type}$

such that the canonical map

$$
x =_V y \to \prod_{z:V} (z \in x \simeq z \in y)
$$

is an equivalence.

[Representation and replacement](#page-23-0)

Representation of types

Definition

Given (V, \in) and A : Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Representation of types

Definition

Given (V, \in) and A : Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Definition

If f is an embedding, we say that the representation is **faithful**.

Representation of types

Definition

Given (V, \in) and A : Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Definition

If f is an embedding, we say that the representation is **faithful**.

Definition

A an **internalisation** of f is an element $a \cdot V$ such that for all $z \cdot V$ we have $z \in a \simeq f^{-1}z$.

Replacement

Replacement: If a faithful representation of A in (V, \in) has an in internalisation, then any faithful representation of A in (V, \in) has an internalisation.

Example: Natural numbers

The von Neumann encoding gives a faithful representation $\mathbb{N} \to V$.

The axiom of infinity says that this representation can be internalised.

Example: Natural numbers

The von Neumann encoding gives a faithful representation $\mathbb{N} \to V$.

The axiom of infinity says that this representation can be internalised. With replacement, it does not matter which encoding we use.

Higher version

A representation $f : A \rightarrow V$ is $n + 1$ -faithful if f is n-truncted.

n-replacement: If an $n+1$ faithful representation of A can be internalised, any representation can be internalised.

Can now be applied to coverings $G \to V$.

 V^1

Observation

Every *n*-type $A: U$ is represented in V^{n+1} .

Question

Which *n*-types occur in V^n ?

Håkon R. Gylterud, Elisabeth Stenholm

The circle is in V^1

There is a map $f:S^1\to V^\infty$ which maps

- base \mapsto sup $\mathbb{Z}(\text{const } \emptyset)$ and
- loop to a loop in V^1 based on succ : $\mathbb{Z} \simeq \mathbb{Z}.$

This map is 0-truncated so sup $S^1\,f$ is in $\,V^1\,$

f base =

{· · · *,* ∅*,* ∅*,* ∅*,* · · · }

The circle is in V^1

There is a map $f:S^1\to V^\infty$ which maps

■ base \mapsto sup $\mathbb{Z}(\text{const } \emptyset)$ and loop to a loop in V^1 based on succ : $\mathbb{Z} \simeq \mathbb{Z}.$ This map is 0-truncated so sup $S^1\,f$ is in $\,V^1\,$ f base = {· · · *,* ∅*,* ∅*,* ∅*,* · · · }

This argument extends to other groups.

Conclusions

- V^n is an *n*-type universe of *n*-types.
- The axioms of set theory can be extended to properties of \in -structures.
- For references and details:
	- \blacksquare <https://arxiv.org/abs/2312.13024>

Thank you for your attention!