	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Univalent Material Set Theory

Håkon R. Gylterud Elisabeth Stenholm

TYPES 2024

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement
Why?			

Why talk about set theory in type theory?

- Set theory is mathematics too.
 - The structures of set theory might be useful.
- HoTT may give new perspectives on sets.

This talk's perspective: How to approach higher-dimensional set theory? Formalisation: https://git.app.uib.no/hott/hott-set-theory

Models	Sets	Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000	0000	0000000

Outline

1 Models:

- Aczel's V (aka. V^{∞})
- The iterative hierarchy (aka. V^0)
- All the things in between (aka. V^n)
- 2 A couple of properties
 - Extensionality
 - Replacement

Models	Higher sets	Univalent Material Set Theory	
000			

Models

Models ○●○	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

 V^{∞}

$$V^{\infty} := W_{A:U}A$$

A : U and

$$v: A \to V^{\infty}.$$

- The initial algebra for the polynomial functor $X \mapsto \sum_{A:U} (A \to X).$
- Lives on the same type level as U (if any).

Models oo●	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

 V^{∞}

$$V^{\infty} := W_{A:U}A$$

V

- A natural elementhood relation x ∈ sup A v := ∑_{a:A}(v a = x) or: x ∈ sup A v := v⁻¹x
- Used by Aczel in a setoid model of CZF.

Sets	Higher sets	Univalent Material Set Theory	Representation and replacement
00000			

Sets

	Sets o●oooo	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement
V^0				

For V^∞ , the \in -relation is not propositional. But we can restrict to a subtype where it is.

is-iterative-0-type :
$$V^{\infty} \to \text{Type}$$

is-iterative-0-type (sup Av) := $\left(\prod_{x:V^{\infty}} \text{is-prop}(v^{-1}x)\right) \times \left(\prod_{a:A} \text{is-iterative-0-type}(va)\right)$
 $V^{0} := \sum_{x:V^{\infty}} (\text{is-iterative-0-type } x)$

V^0 as model of set theory

$$V^0 = \sum_{x:V^{\infty}} ($$
is-iterative-0-type $x)$

 V⁰ is the initial algebra of the *U*-restricted powerset functor: P⁰_UX = ∑_{A:U}A → X.
 V⁰ is a mere set. $\int_{V^0}^{v}$

 Models
 Sets
 Higher sets
 Univalent Material Set Theory
 Representation and replacement

 000
 0000000
 0000
 0000
 0000000

V^0 as model of set theory

$$V^0 = \sum_{x:V^{\infty}}$$
 (is-iterative-0-type x)

- \in naturally restricts to V^0 .
- (V^0 , \in) models (constructive) set theory.

 Models
 Sets
 Higher sets
 Univalent Material Set Theory
 Representation and replacement

 000
 000000
 0000
 0000
 0000000

Structural properties of V^0

(j.w.w. Daniel Gratzer and Anders Mörtberg)

We can also look at V^0 from a structural point of view:

- El : $V^0 \rightarrow$ Type defined by El(sup Av) := A
- (V^0, EI) is a universe a la Tarski, closed under:
 - Σ-,Π-,Id-types
 - \blacksquare Inductive types such as $\mathbb N$ and Bool
 - Set quotients
- All decodings are definitional: $El(\Pi(A, B)) \equiv \prod_{a:El A} El(B a)$
- Sub-universes of U generate subuniverses of V^0 .

	Sets 00000●	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement
0				

V^0

Conclusion: V^0 is a mere set universe of mere sets.

Sets 00000●	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

V^0

Conclusion: V^0 is a mere set universe of mere sets.

Application: Category with Families structure on the category of sets.

See: Gratzer, Gylterud, Mörtberg , Stenholm (2024). *The Category of Iterative Sets in Homotopy Type Theory and Univalent Foundations* arXiv:2402.04893.

	Higher sets	Univalent Material Set Theory	
	0000		

Higher sets

	Higher sets ○●○○	Univalent Material Set Theory 0000	Representation and replacement
Dn			

 P^n

The *U*-restricted powerset functor P_U^0 : Type \rightarrow Type can be generalised as follows:

$${\mathcal P}_U^{n+1}: { t Type} o { t Type}
onumber \ {\mathcal P}_U^{n+1}X:=\sum_{A:U}A \hookrightarrow^n X$$

where $A \hookrightarrow^n X$ are the *n*-tructated maps into X from A.

	Higher sets ○●○○	Univalent Material Set Theory 0000	Representation and replacement
Dn			

 P^n

The *U*-restricted powerset functor P_U^0 : Type \rightarrow Type can be generalised as follows:

$${\mathcal P}_U^{n+1}: { t Type} o { t Type}
onumber \ {\mathcal P}_U^{n+1}X:=\sum_{A:U}A \hookrightarrow^n X$$

.

where $A \hookrightarrow^n X$ are the *n*-tructated maps into X from A.

	Higher sets 00●0	Univalent Material Set Theory 0000	Representation and replacement
1/1			

V^n

The initial algebra of P_U^n can be constructed just as for P^0 :

is-iter-
$$n+1$$
-type : $V^{\infty} \to \text{Type}$
is-iter- $n+1$ -type (sup Av) := $\left(\prod_{x:V^{\infty}} \text{is-n-type}(v^{-1}x)\right) \times \left(\prod_{a:A} \text{is-iter-} n+1\text{-type}(va)\right)$
 $V^{n} = \sum_{x:V^{\infty}} (\text{is-iter-n-type } x)$

	Higher sets 000●	Univalent Material Set Theory 0000	Representation and replacement

Structural properties of V^n

$$V^n = \sum_{x:V^{\infty}} (\text{is-iter-n-type } x)$$

■ Vⁿ is an *n*-type.

- El : $V^n \rightarrow$ Type defined by El(sup Av) := A
- (V^n, EI) is a universe a la Tarski, closed under:
 - Σ-,Π-,Id-types
 - Inductive types such as \mathbb{N} and Bool
 - Set quotients
- All decodings are definitional: $El(\Pi(A, B)) \equiv \prod_{a:El A} El(B a)$
- Sub-universes of U generate subuniverses of V^n .

Conclusion: V^n is an *n*-type universe of *n*-types.

Håkon R. Gylterud, Elisabeth Stenholm

Univalent Material Set Theory

		Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000	-000	0000000

Univalent Material Set Theory

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement
Idea			

Remember: (V^0, \in) models (constructive) set theory

Question

What does (V^n, \in) model?

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Idea

Remember: (V^0, \in) models (constructive) set theory

Question

What does (V^n, \in) model?

Answer

Univalent material set theory!

What is univalent material set theory

Univalent material set theory

- Has HoTT as its meta-theory.
- Generalises the axioms of set theory to higher type levels:
 - Level 0 is about mere sets and material sets.
 - Level 1 is about groupoids and multisets.
 - ...?
- Most axioms are indexed by type levels in range 0 to ∞ .
- $x \in y$ is an n-1 type, and so is x = y.

Models	Sets	Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000	000●	
000	000000	0000	0000	0000000

\in -structures

Definition

An \in -structure, (V, \in) consists of

- *V* : Type
- lacksquare \in : V
 ightarrow V
 ightarrow Type

such that the canonical map

$$x =_V y \to \prod_{z:V} (z \in x \simeq z \in y)$$

is an equivalence.

		Univalent Material Set Theory	Representation and replacement
000000	0000	0000	●0000000

Representation and replacement

Models	Sets	Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000	0000	

Representation of types

Definition

Given (V, \in) and A: Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Models	Sets	Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000	0000	

Representation of types

Definition

Given (V, \in) and A: Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Definition

If f is an embedding, we say that the representation is **faithful**.

		Higher sets	Univalent Material Set Theory	Representation and replacement
000	000000	0000		

Representation of types

Definition

Given (V, \in) and A: Type, a **representation** of A in (V, \in) is a map $f : A \to V$.

Definition

If f is an embedding, we say that the representation is **faithful**.

Definition

A an **internalisation** of f is an element a : V such that for all z : V we have $z \in a \simeq f^{-1}z$.

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Replacement

Replacement: If a faithful representation of A in (V, \in) has an in internalisation, then any faithful representation of A in (V, \in) has an internalisation.

	Univalent Material Set Theory	Representation and replacement
		0000000

Example: Natural numbers

The von Neumann encoding gives a faithful representation $\mathbb{N} \to V.$

The axiom of infinity says that this representation can be internalised.

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Example: Natural numbers

The von Neumann encoding gives a faithful representation $\mathbb{N} \to V$. The axiom of infinity says that this representation can be internalised.

With replacement, it does not matter which encoding we use.

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Higher version

A representation $f : A \rightarrow V$ is n + 1-faithful if f is n-truncted.

n-replacement: If an n + 1 faithful representation of A can be internalised, any representation can be internalised.

Can now be applied to coverings $G \rightarrow V$.

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

 V^1

Observation

Every *n*-type A: U is represented in V^{n+1} .

Question

Which *n*-types occur in V^n ?

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

The circle is in V^1

There is a map $f:S^1 o V^\infty$ which maps

- base \mapsto sup $\mathbb{Z}($ const $\emptyset)$ and
- loop to a loop in V^1 based on succ : $\mathbb{Z} \simeq \mathbb{Z}$.

This map is 0-truncated so sup $S^1 f$ is in V^1

f base

 $\{\cdots, \emptyset, \emptyset, \emptyset, \cdots\}$

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

The circle is in V^1

There is a map $f: S^1 \to V^\infty$ which maps

- base \mapsto sup $\mathbb{Z}(\mathsf{const}\; \emptyset)$ and
 - loop to a loop in V^1 based on succ : $\mathbb{Z} \simeq \mathbb{Z}$.

This map is 0-truncated so sup $S^1 f$ is in V^1

 $\{\cdots, \emptyset, \emptyset, \emptyset, \cdots\}$

This argument extends to other groups.

	Higher sets 0000	Univalent Material Set Theory 0000	Representation and replacement

Conclusions

- V^n is an *n*-type universe of *n*-types.
- The axioms of set theory can be extended to properties of ∈-structures.
- For references and details:
 - https://arxiv.org/abs/2312.13024

Thank you for your attention!